满分5 > 高中数学试题 >

函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f=f...

函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)赋值,令x1=x2=1,有f(1×1)=f(1)+f(1),由此可解得f(1)的值; (2)方法同(1)赋值求出f(-1)=0,再令x1=-1,x2=x,有f(-x)=f(-1)+f(x)构造出f(-x)与f(x)的方程研究其间的关系.得出奇偶性,解答本题时注意做题格式,先判断后证明; (3)由题设条件f(4)=1与函数的恒等式,将f(3x+1)+f(2x-6)≤3转化为f[(3x+1)(2x-6)]≤f(64),再由f(x)在(0,+∞)上是增函数与f(x)是偶函数的性质将此抽象不等式转化为一元二次不等式,求解x的范围. (1)【解析】 令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. (2)证明:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1).解得f(-1)=0. 令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数. (3)【解析】 f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3. ∴f(3x+1)+f(2x-6)≤3即f[(3x+1)(2x-6)]≤f(64).(*) ∵f(x)在(0,+∞)上是增函数, ∴(*)等价于不等式组 或 或或 ∴3<x≤5或-≤x<-或-<x<3. ∴x的取值范围为{x|-≤x<-或-<x<3或3<x≤5}.
复制答案
考点分析:
相关试题推荐
已知f(x)=x2-2ax+5(a>1)
(Ⅰ)若f(x)的定义域和值域均为[1,a],求a的值;
(Ⅱ)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.
查看答案
某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.
第t天4101622
Q(万股)36302418
(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?

manfen5.com 满分网 查看答案
在函数y=logax(a>1)的图象上有A、B、C三点,横坐标分别为m,m+2,m+4,其中m>1.
(1)求△ABC的面积S=f(m)的表达式;
(2)求S=f(m)的值域.
查看答案
设命题p:函数y=cx在R上单调递减,命题q:不等式|x|+|x-2c|>1的解集为R,若p∨q为真,p∧q为假,求实数c的取值范围.
查看答案
已知A={-1,1},B={x|x2-2ax+b=0},若B≠∅,且A∪B=A,求a、b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.