满分5 > 高中数学试题 >

直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B. (...

直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.
(I)求实数k的取值范围;
(II)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
(Ⅰ)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,由题意知,由此可知实数k的取值范围. (Ⅱ)设A、B两点的坐标分别为(x1,y1)、(x2,y2),由题意得,由此入手可求出k的值. 【解析】 (Ⅰ)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0.① 依题意,直线l与双曲线C的右支交于不同两点,故 解得k的取值范围是-2<k<. (Ⅱ)设A、B两点的坐标分别为(x1,y1)、(x2,y2),则由①式得② 假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0). 则由FA⊥FB得:(x1-c)(x2-c)+y1y2=0. 即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0. 整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0.③ 把②式及代入③式化简得. 解得 可知使得以线段AB为直径的圆经过双曲线C的右焦点.
复制答案
考点分析:
相关试题推荐
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.

manfen5.com 满分网 查看答案
设F是抛物线G:x2=4y的焦点.
(I)过点P(0,-4)作抛物线G的切线,求切线方程;
(II)设A,B为抛物线G上异于原点的两点,且满足manfen5.com 满分网,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
查看答案
manfen5.com 满分网如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若manfen5.com 满分网,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
查看答案
过椭圆manfen5.com 满分网内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是    查看答案
有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.