满分5 > 高中数学试题 >

已知直线y=-x+1与椭圆=1(a>b>0)相交于A、B两点. (1)若椭圆的离...

已知直线y=-x+1与椭圆manfen5.com 满分网=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为manfen5.com 满分网,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈manfen5.com 满分网时,求椭圆的长轴长的最大值.
(1)利用椭圆的离心率公式求出椭圆中的参数a,利用椭圆中三个参数的关系求出b,代入椭圆的方程求出椭圆的标准方程. (2)将直线的方程与椭圆的方程联立,利用韦达定理求出两个交点的横、纵坐标之积;利用向量垂直的充要条件将 OA⊥OB用交点的坐标表示,得到椭圆的三个参数的一个等式,再利用椭圆的三个参数本身的关系得到参数a与离心率的关系,利用离心率的范围求出a的范围,得到椭圆的长轴长的最大值. 解(1)∵e=.又2c=2,解得a=, 则b=. (2) 由 消去y得(a2+b2)•x2-2a2x+a2•(1-b2)=0, 由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1. 设A(x1,y1,),B(x2,y2), 则x1+x2=. ∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1. ∵OA⊥OB(其中O为坐标原点), ∴x1x2+y1y2=0,即2x1x2-(x1+x2)+1=0. ∴+1=0.整理得a2+b2-2a2b2=0. ∵b2=a2-c2=a2-a2e2,代入上式得 2a2=1+, ∴a2=. ∵e∈∴, ∴, ∴≤2,∴≤3, ∴,适合条件a2+b2>1, 由此得. ∴, 故长轴长的最大值为
复制答案
考点分析:
相关试题推荐
甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜.你认为此游戏是否公平?请说明你的理由.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
查看答案
已知manfen5.com 满分网定义域为R.
(1)求f(x)的值域;
(2)在区间manfen5.com 满分网上,f(α)=3,求manfen5.com 满分网).
查看答案
manfen5.com 满分网如图所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=    查看答案
(坐标系与参数方程选做题)在极坐标系中,直线l的方程为3ρsinϑ-4ρcosϑ=2,则点(manfen5.com 满分网到直线l的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.