满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数. (1)若...

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
(1)根据f(x)是定义域为R的奇函数,可得k=1,从而f(x)=ax-a-x(a>0,且a≠1),利用f(1)>0,可得a>1,从而可证f(x)在R上单调递增,故原不等式化为x2+2x>4-x,从而可求不等式的解集; (2)根据f(1)=确定a=2的值,从而可得函数g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,可得t≥f(1)=,令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥),分类讨论,利用最小值为-2,可求m的值. 【解析】 (1)∵f(x)是定义域为R的奇函数,∴f(0)=0,可k-1=0,即k=1, 故f(x)=ax-a-x(a>0,且a≠1) ∵f(1)>0,∴a->0,又a>0且a≠1,∴a>1. f′(x)=axlna+ ∵a>1,∴lna>0,而ax+>0, ∴f′(x)>0,∴f(x)在R上单调递增 原不等式化为:f(x2+2x)>f(4-x), ∴x2+2x>4-x,即x2+3x-4>0 ∴x>1或x<-4, ∴不等式的解集为{x|x>1或x<-4}. (2)∵f(1)=,∴a-=,即2a2-3a-2=0,∴a=2或a=-(舍去). ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2. 令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数 ∵x≥1,∴t≥f(1)=, 令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥) 若m≥,当t=m时,h(t)min=2-m2=-2,∴m=2 若m<,当t=时,h(t)min=-3m=-2, 解得m=>,舍去 综上可知m=2.
复制答案
考点分析:
相关试题推荐
已知:如图正方形ABCD的边长为a,P,Q分别为AB,DA上的点,当△PAQ的周长为2a时,求∠PCQ.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,使得x2+(a-1)x+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x1,x2∈[0,3],且x1≠x2时,都有manfen5.com 满分网>0.则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;
④方程f(x)=0在[-9,9]上有4个根.
其中正确命题的序号是    .(请将你认为是真命题的序号都填上) 查看答案
在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天10:00观察到该航船在A处,此时测得∠ADC=30°,3分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则船速为    千米/分钟.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.