满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=6...

manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD即可. (2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD. 证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD. 又因为EF不在平面PCD中,PD⊂平面PCD 所以直线EF∥平面PCD. (2)连接BD.因为AB=AD,∠BAD=60°. 所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD. 因为平面PAD⊥平面ABCD,BF⊂平面ABCD, 平面PAD∩平面ABCD=AD,所以BF⊥平面PAD. 又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
复制答案
考点分析:
相关试题推荐
已知F1、F2分别为双曲线C:manfen5.com 满分网的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=    查看答案
已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6.BC=2manfen5.com 满分网,则棱锥O-ABCD的体积为    查看答案
用a、b、c表示三条不同的直线,y表示平面,给出下列命题:
①若a∥b,b∥c,则a∥c;
②若a⊥b,b⊥c,则a⊥c;
③若a∥y,b∥y,则a∥b;
④若a⊥y,b⊥y,则a∥b.
其中真命题的序号是    查看答案
在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为manfen5.com 满分网.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为    查看答案
已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.