满分5 > 高中数学试题 >

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多...

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
(1)已知各局胜负相互独立,第二局比赛结束时比赛停止,包含甲连胜2局或乙连胜2局,写出甲连胜两局的概率和乙连胜两局的概率求和为.解出关于P的方程. (2)因为比赛进行到有一人比对方多2分或下满6局时停止,所以ξ的所有可能取值为2,4,6,而ξ=2已经做出概率,只要求出ξ=4或ξ=6时的概率即可,最后求出期望. 【解析】 (1)当甲连胜2局或乙连胜2局时, 第二局比赛结束时比赛停止,故, 解得 (2)依题意知ξ的所有可能取值为2,4,6, 设每两局比赛为一轮,则该轮结束时比赛停止的概率为, 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分, 此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有, 则随机变量ξ的分布列为: 故.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2sin2manfen5.com 满分网manfen5.com 满分网,x∈R.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
若不等式manfen5.com 满分网>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是    查看答案
(坐标系与参数方程选做题)若曲线manfen5.com 满分网为参数)与曲线:manfen5.com 满分网(θ为参数)相交于A,B两点,则|AB|=    查看答案
(几何证明选讲选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为   
manfen5.com 满分网 查看答案
平面上的向量manfen5.com 满分网,若向量manfen5.com 满分网
最大为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.