满分5 > 高中数学试题 >

已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)...

已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件. (2)可根据函数奇偶性的定义进行证明,应由条件先得到f(0)=0后,再利用条件f(x1+x2)=f(x1)+f(x2)中x1、x2的任意性,可使结论得证. (3)由(1)的结论可知f(m)、f(n)分别是函数y=f(x)在[m、n]上的最大值与最小值,故求出f(m)与f(n)就可得所求值域. (1)证明:任取x1、x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)], 于是由题设条件f(x+x′)=f(x)+f(x′)可知f(x2)=f(x1)+f(x2-x1). ∵x2>x1,∴x2-x1>0.∴f(x2-x1)<0. ∴f(x2)=f(x1)+f(x2-x1)<f(x1). 故函数y=f(x)是单调减函数. (2)证明:∵对任意x、x′∈R均有f(x+x′)=f(x)+f(x′), ∴若令x=x′=0,则f(0)=f(0)+f(0). ∴f(0)=0. 再令x′=-x,则可得f(0)=f(x)+f(-x). ∵f(0)=0,∴f(-x)=-f(x).故y=f(x)是奇函数. (3)【解析】 由函数y=f(x)是R上的单调减函数, ∴y=f(x)在[m,n]上也为单调减函数. ∴y=f(x)在[m,n]上的最大值为f(m),最小值为f(n). ∴f(n)=f[1+(n-1)]=f(1)+f(n-1)=2f(1)+f(n-2)═nf(1). 同理,f(m)=mf(1). ∵f(3)=-3,∴f(3)=3f(1)=-3. ∴f(1)=-1.∴f(m)=-m,f(n)=-n. 因此,函数y=f(x)在[m,n]上的值域为[-n,-m].
复制答案
考点分析:
相关试题推荐
甲乙两人各进行3次射击,甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网
(1)记甲击中目标的次数为ξ,求ξ的概率分布列及数学期望.
(2)求乙至多击中目标2次的概率.
(3)求甲恰好比乙多击中目标2次的概率.
查看答案
已知函数manfen5.com 满分网是奇函数.
(1)求m的值.
(2)当a=2时,解不等式manfen5.com 满分网
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤1的解集为Q,
(1)若a=3,求P∪Q.
(2)若Q⊆P,求实数a的取值范围.
查看答案
关于函数manfen5.com 满分网,有下列命题
①其图象关于y轴对称;
②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;
③f(x)的最小值是lg2;
④f(x)在区间(-1,0)、(2,+∞)上是增函数;
⑤f(x)无最大值,也无最小值
其中所有正确结论的序号是    查看答案
已知函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m+n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.