根据椭圆中的结论,利用角平分线的性质与椭圆的定义,可类比双曲线中的相应结论.
【解析】
点F2关于∠F1PF2的外角平分线PM的对称点Q在F1P的延长线上
∵F1,F2是椭圆的两个焦点,P为椭圆上的一个动点,过F2作∠F1PF2的外角平分线的垂线,垂足为M
∴|F1Q|=|PF1|+|PF2|=2a(椭圆长轴长),又OM是△F2F1Q的中位线,故|OM|=a;
不妨设点P在双曲线右支上,点F1关于∠F1PF2的内角平分线PM的对称点Q在PF2的延长线上
当过F2作∠F1PF2的内角平分线的垂线,垂足为M时,|F2Q|=|PF1|-|PF2|=2a,又OM是△F2F1Q的中位线,故|OM|=a;
故答案为:内角平分线