满分5 > 高中数学试题 >

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数)...

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.-3
B.-1
C.1
D.3
首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(-x)=-f(x)求f(-1)的值. 【解析】 因为f(x)为定义在R上的奇函数, 所以f(0)=2+2×0+b=0, 解得b=-1, 所以当x≥0时,f(x)=2x+2x-1, 又因为f(x)为定义在R上的奇函数, 所以f(-1)=-f(1)=-(21+2×1-1)=-3, 故选A.
复制答案
考点分析:
相关试题推荐
已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是( )
A.f(4)>f(-6)
B.f(-4)<f(-6)
C.f(-4)>f(-6)
D.f(4)<f(-6)
查看答案
f(x)=manfen5.com 满分网是R上的单调递增函数,则实数a的取值范围为( )
A.(1,+∞)
B.[4,8)
C.(4,8)
D.(1,8)
查看答案
给定函数①manfen5.com 满分网,②manfen5.com 满分网,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )
A.①②
B.②③
C.③④
D.①④
查看答案
已知f(x)=manfen5.com 满分网,则manfen5.com 满分网等于( )
A.-2
B.4
C.2
D.-4
查看答案
命题“存在x∈R,2x≤0”的否定是( )
A.不存在x∈R,manfen5.com 满分网>0
B.存在x∈R,manfen5.com 满分网≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.