满分5 > 高中数学试题 >

下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A.y=x3 B....

下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )
A.y=x3
B.y=|x|+1
C.y=-x2+1
D.y=2-|x|
首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=-x2+1、y=2-|x|=的单调性易于选出正确答案. 【解析】 因为y=x3是奇函数,y=|x|+1、y=-x2+1、y=2-|x|均为偶函数, 所以选项A错误; 又因为y=-x2+1、y=2-|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数, 所以选项C、D错误,只有选项B正确. 故选B.
复制答案
考点分析:
相关试题推荐
若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是( )
A.(-∞,2)
B.(2,+∞)
C.(-∞,-2)∪(2,+∞)
D.(-2,2)
查看答案
设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=( )
A.{x|x<-2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<-2或x>2}
查看答案
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.-3
B.-1
C.1
D.3
查看答案
已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是( )
A.f(4)>f(-6)
B.f(-4)<f(-6)
C.f(-4)>f(-6)
D.f(4)<f(-6)
查看答案
f(x)=manfen5.com 满分网是R上的单调递增函数,则实数a的取值范围为( )
A.(1,+∞)
B.[4,8)
C.(4,8)
D.(1,8)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.