满分5 > 高中数学试题 >

已知函数f(x)=x3-ax2-3x(a∈R). (Ⅰ)若函数f(x)在区间[1...

已知函数f(x)=x3-ax2-3x(a∈R).
(Ⅰ)若函数f(x)在区间[1,+∞)上为增函数,求实数a的取值范围;
(Ⅱ)若manfen5.com 满分网是函数f(x)的极值点,求函数f(x)在区间[1,a]上的最大值;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出b的取值范围;若不存在,试说明理由.
(Ⅰ)首先求出函数的导数,然后根据导数与函数单调性的关系进行计算, (Ⅱ)首先利用函数的导数与极值的关系求出a的值,然后求出函数极值的大小并与端点函数值进行比较,进而求出函数的最大值, (Ⅲ)可以先假设存在,然后再依据根的存在性定理进行判断. 【解析】 (Ⅰ)由题意得f′(x)=3x2-2ax-3, ∵f(x)在区间[1,+∞)上是增函数, ∴当x∈[1,+∞)时,恒有f′(x)≥0, 即3x2-2ax-3≥0在区间[1,+∞)上恒成立, 由且f′(1)=-2a≥0, 解得a≤0, (Ⅱ)依题意得, ∴f(x)=x3-4x2-3x, 令f′(x)=3x2-8x-3=0, 解得, 而, 故f(x)在区间[1,4]上的最大值是f(1)=-6. (Ⅲ)若函数g(x)=bx的图象与函数f(x)的图象恰有3个不同的交点, 即方程x3-4x2-3x=bx恰有3个不等的实数根, 而x=0是方程x3-4x2-3x=bx的一个实数根,则 方程x2-4x-3-b=0有两个非零实数根, 则, 即b>-7且b≠-3, 故满足条件的b存在,其取值范围是(-7,-3)∪(-3,+∞).
复制答案
考点分析:
相关试题推荐
设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有manfen5.com 满分网>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-manfen5.com 满分网)<f(x-manfen5.com 满分网);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.
查看答案
设函数f(x)=2x+a•2-x-1(a为实数).
(1)若a<0,用函数单调性定义证明:y=f(x)在(-∞,+∞)上是增函数;
(2)若a=0,y=g(x)的图象与y=f(x)的图象关于直线y=x对称,求函数y=g(x)的解析式.
查看答案
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数manfen5.com 满分网的值域,集合C为不等式manfen5.com 满分网的解集.
(1)求A∩B;
(2)若C⊆CRA,求a的取值范围.
查看答案
已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是    查看答案
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对∀x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解.
其中真命题的个数是    个. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.