(几何证明选讲选做题)已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=3
,求AD的长.
考点分析:
相关试题推荐
已知数列{a
n},对于任意n≥2,在a
n-1与a
n之间插入n个数,构成的新数列{b
n}成等差数列,并记在a
n-1与a
n之间插入的这n个数均值为C
n-1.
(1)若a
n=
,求C
1,C
2,C
3;
(2)在(1)的条件下是否存在常数λ,使{C
n-1-λC
n}是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由;
(3)求出所有的满足条件的数列{a
n}.
查看答案
已知函数f(x)=
(1)当
时,求f(x)的极值点;
(2)若f(x)在f′(x)的单调区间上也是单调的,求实数a的范围.
查看答案
如图,已知椭圆
,左、右焦点分别为F
1,F
2,右顶点为A,上顶点为B,P为椭圆上在第一象限内一点.
(1)若
,求椭圆的离心率;
(2)若
=
,求直线PF
1的斜率k;
(3)若
成等差数列,椭圆的离心率e
,求直线PF
1的斜率k的取值范围.
查看答案
如图,半径为1圆心角为
圆弧
上有一点C.
(1)当C为圆弧
中点时,D为线段OA上任一点,求
的最小值.
(2)当C在圆弧
上运动时,D、E分别为线段OA、OB的中点,求
的取值范围.
查看答案
某学校需要一批一个锐角为θ的直角三角形硬纸板作为教学用具(
≤θ≤
),现准备定制长与宽分别为a、b(a>b)的硬纸板截成三个符合要求的△AED、△BAE、△EBC.(如图所示)
(1)当θ=
时,求定制的硬纸板的长与宽的比值;
(2)现有三种规格的硬纸板可供选择,A规格长80cm,宽30cm,B规格长60cm,宽40cm,C规格长72cm,宽32cm,可以选择哪种规格的硬纸板使用.
查看答案