满分5 > 高中数学试题 >

已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤...

已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).
(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2
(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
(Ⅰ)f′(x)≤f(x)转化为x2+(b-2)x+c-b≥0恒成立,找到b和c之间的关系,再对f(x)和(x+c)2作差整理成关于b和c的表达式即可. (Ⅱ)对c≥|b|分c>|b|和c=|b|两种情况分别求出对应的M的取值范围,再综合求M的最小值即可. 【解析】 (Ⅰ)易知f'(x)=2x+b.由题设,对任意的x∈R,2x+b≤x2+bx+c, 即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,从而. 于是c≥1,且,因此2c-b=c+(c-b)>0. 故当x≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0. 即当x≥0时,f(x)≤(x+c)2. (Ⅱ)由(Ⅰ)得,c≥|b| 当c>|b|时,有M≥==, 令t=则-1<t<1,=2-, 而函数g(t)=2-(-1<t<1)的值域(-∞,) 因此,当c≥|b|时M的取值集合为[,+∞). 当c=|b|时,由(Ⅰ)知,b=±2,c=2. 此时f(c)-f(b)=-8或0,c2-b2=0, 从而恒成立. 综上所述,M的最小值为
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网是R上的奇函数.
(1)求a值;
(2)求f (x)的值域;
(3)若manfen5.com 满分网,求x值范围.
查看答案
已知数列{an}中,manfen5.com 满分网,且前n项和为Sn满足manfen5.com 满分网
(1)求a2,a3,a4的值,并归纳出an的通项公式;
(2)由(1)问结论,用反证法证明不等式:an>an+1
查看答案
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求a、b值;
(2)求函数f(x)的单调增、减区间分别是什么?
查看答案
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次实验,得到的数据如下表:
零件的个数x(个)2345
加工的时间y(小时)2.53.04.04.5
(1)求出y关x的线性回归方程manfen5.com 满分网
(2)试预测加工20个零件需要多少时间?
查看答案
已知命题p:-2≤x≤10,命题q:(x+m-1)(x-m-1)≤0(其中m>0),且¬p是¬q的必要条件,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.