满分5 > 高中数学试题 >

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处...

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可; (Ⅱ)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求得区间即为单调区间,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值. 【解析】 (Ⅰ)∵f(x)为奇函数, ∴f(-x)=-f(x) 即-ax3-bx+c=-ax3-bx-c ∴c=0 ∵f'(x)=3ax2+b的最小值为-12 ∴b=-12 又直线x-6y-7=0的斜率为 因此,f'(1)=3a+b=-6 ∴a=2,b=-12,c=0. (Ⅱ)f(x)=2x3-12x.,列表如下: 所以函数f(x)的单调增区间是和 ∵f(-1)=10,,f(3)=18 ∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是.
复制答案
考点分析:
相关试题推荐
设函数f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函数f(x)在[1,e]上的最小值;
(Ⅱ)若函数f(x)在manfen5.com 满分网上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f(x)的极值点.
查看答案
函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.
(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.
查看答案
已知函数f(x)对任意的x,y∈R,都有f(x+y)=f(x)+f(y)-2,,且当x>0时,f(x)>2.
(1)判断f(x)的单调性,并证明;
(2)若f(3)=5,求满足f(a2-2a-2)<3的实数a的取值范围.
查看答案
求函数manfen5.com 满分网的单调区间.
查看答案
已知函数f(x)的导函数为f′(x),且f(x)=2xf′(1)+lnx,则f′(1)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.