函数化为分段函数即函数∵f(-x)=-f(x)∴函数为奇函数,从而判断函数当x≥0时的性质即可,由值域和单调性可得①②正确,③的正确性可用数学归纳法证明
【解析】
函数化为分段函数即函数
∵f(-x)=-f(x)
∴函数为奇函数,
∵x≥0时,f(x)==∈[0,1)
∴函数f(x)的值域为 (-1,1),故①正确
∵x≥0时,f(x)==为[0,+∞)的单调增函数
∴函数f(x)为R上的单调增函数,
∴若x1≠x2,则一定有f(x1)≠f(x2),故②正确
下面用数学归纳法证明③正确
证明:n=1时,命题显然成立;
假设n=k时命题成立,即
则n=k+1时,fk+1(x)=f(fk(x))===
即n=k+1时命题成立
∴对任意n∈N*恒成立
故答案为3