满分5 > 高中数学试题 >

已知双曲线的两个焦点为 的曲线C上. (Ⅰ)求双曲线C的方程; (Ⅱ)记O为坐标...

已知双曲线manfen5.com 满分网的两个焦点为manfen5.com 满分网
的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为manfen5.com 满分网,求直线l的方程.
(1)根据题意可得a2+b2=4,得到a和b的关系,把点(3,)代入双曲线方程,求得a,进而根据a2+b2=4求得b,双曲线方程可得. (2)可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,根据直线I与双曲线C相交于不同的两点E、F,进而可得k的范围,设E(x1,y1),F(x2,y2),根据韦达定理可求得x1+x2和x1x2,进而表示出|EF|和原点O到直线l的距离根据三角形OEF的面积求得k,进而可得直线方程. 【解析】 (Ⅰ):依题意,由a2+b2=4,得双曲线方程为(0<a2<4), 将点(3,)代入上式,得.解得a2=18(舍去)或a2=2, 故所求双曲线方程为. (Ⅱ):依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理, 得(1-k2)x2-4kx-6=0. ∵直线I与双曲线C相交于不同的两点E、F, ∴ ∴k∈(-)∪(1,). 设E(x1,y1),F(x2,y2),则由①式得x1+x2=, 于是,|EF|= = 而原点O到直线l的距离d=, ∴S△OEF=. 若S△OEF=,即,解得k=±, 满足②.故满足条件的直线l有两条,其方程分别为y=和.
复制答案
考点分析:
相关试题推荐
若曲线C:y=x3-2ax2+2ax上任意点处的切线的倾斜角都为锐角,且a为整数.
(1)求曲线C的解析式;
(2)求过点(1,1)的曲线的切线方程.
查看答案
命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-x-6≤0或x2+2x-8>0;若¬p是¬q的必要不充分条件,求a的取值范围.
查看答案
2008年奥运会在北京举行,奥运会期间需从8名志愿者中选出英语、俄语和日语的志愿者各一名组成一服务小组,已知8名志愿者中A1,A2,A3,A4会英语,B1,B2,B3会俄语,只有C会日语.
(1)求B1被选中的概率;
(2)求B1和A1不全被选中的概率.
查看答案
我们把离心率为manfen5.com 满分网的双曲线manfen5.com 满分网称为黄金曲线,O为坐标原点,如图所示,给出以下几个命题:
①双曲线manfen5.com 满分网是黄金曲线;
②若b2=ac,则该双曲线是黄金曲线;
③若manfen5.com 满分网,则该双曲线是黄金曲线;
④若∠MON=90°,则该双曲线是黄金曲线;
其中正确的是   
manfen5.com 满分网 查看答案
manfen5.com 满分网在(m,10-m2)上有最小值,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.