满分5 > 高中数学试题 >

设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A...

设F1,F2分别为椭圆manfen5.com 满分网(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的焦距;
(Ⅱ)如果manfen5.com 满分网,求椭圆C的方程.
(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值. (Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程. 【解析】 (Ⅰ)设焦距为2c,由已知可得F1到直线l的距离. 所以椭圆C的焦距为4. (Ⅱ)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为. 联立. 解得. 因为. 即. 得. 故椭圆C的方程为.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,直线l过抛物线y2=4x的焦点F交抛物线于A、B两点.
(1)若|AB|=8,求直线l的斜率
(2)若|AF|=m,|BF|=n.求证manfen5.com 满分网为定值.
查看答案
抛物线的顶点在原点,它的准线过双曲线manfen5.com 满分网的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的一个交点位manfen5.com 满分网分别求:
(1)抛物线的方程
(2)双曲线的方程.
查看答案
已知命题p:方程ax2+2x+1=0至少有一负根;命题q:任意实数x∈R满足不等式x2+2ax+1≥0,
(1)求命题p中a的范围   
(2)若命题“p或q”为真,命题“p且q”为假时,求实数a的取值范围.
查看答案
(1)抛物线的顶点在原点,焦点在射线x-y+1=0(x≥0)上求抛物线的标准方程;
(2)求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.
查看答案
在下列四个命题中,正确的序号有    .(填序号)
①命题“存在一个三角形没有外接圆”的否定
②“manfen5.com 满分网”是“一元二次不等式ax2+bx+c≥0的解集为R的充要条件
③存在a∈R,使得a2≤0
manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.