满分5 > 高中数学试题 >

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个...

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.
(1)利用方程表示圆的条件D2+E2-4F>0,建立不等式,即可求出实数m的取值范围; (2)利用圆的半径r=,利用配方法结合(1)中实数m的取值范围,即可求出该圆半径r的取值范围; (3)根据x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0,确定圆的圆心坐标,再消去参数,根据(1)中实数m的取值范围,可求得圆心的轨迹方程. 【解析】 (1)∵方程表示圆, ∴D2+E2-4F=4(m+3)2+4(1-4m2)2-4(16m4+9)=4(-7m2+6m+1)>0, ∴-7m2+6m+1>0 ∴-<m<1.(5分) (2)r== ∵-<m<1 ∴0<r≤.(5分) (3)设圆心坐标为(x,y),则, 由①得m=x-3,代入②消去m得,y=4(x-3)2-1. ∵-<m<1,∴<x<4,即轨迹为抛物线的一段, ∴圆心的轨迹方程为y=4(x-3)2-1(<x<4).(5分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=2x3-3(a+1)x2+6ax+8(a∈R)在x=3处取得极值
(1)求常数a的值;
(2)求f(x)在R上的单调区间;
(3)求f(x)在[-4,4]上的最值.
查看答案
已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面A1B1D1
(2)A1C⊥面AB1D1
(3)求直线AC与平面AB1D1所成角的正切值.

manfen5.com 满分网 查看答案
椭圆C:manfen5.com 满分网长轴为8离心率manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.
查看答案
一个圆锥高h为3manfen5.com 满分网,侧面展开图是个半圆,求:
(1)其母线l与底面半径r之比;
(2)锥角∠BAC;
(3)圆锥的表面积.

manfen5.com 满分网 查看答案
等轴双曲线的两条渐近线夹角为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.