已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x
2-2x-1,且g(1)=-1.令
.
(1)求g(x)的表达式;
(2)若∃x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对∀x
1,x
2∈[1,m],恒有|H(x
1)-H(x
2)|<1.
考点分析:
相关试题推荐
已知数列{a
n}的前n项为和S
n,点
在直线
上.数列{b
n}满足b
n+2-2b
n+1+b
n=0(n∈N
*),且b
3=11,前9项和为153.
(Ⅰ)求数列{a
n}、{b
n}的通项公式;
(Ⅱ)设
,数列{c
n}的前n和为T
n,求使不等式
对一切n∈N
*都成立的最大正整数k的值.
查看答案
某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如表:(单位:万美元)
| 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 |
A产品 | 20 | m | 10 | 200 |
B产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,m是待定常数,其值由生产A产品的原材料决定,预计m∈[6,8],另外,年销售x件B产品时需上交0.05x
2万美元的特别关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、B两种产品的年利润y
1,y
2与生产相应产品的件数x之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计相关方案.
查看答案
设函数
.
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
查看答案
在数列a
n中,a
1=1,
.
(Ⅰ)证明数列
是等比数列,并求数列a
n的通项公式;
(Ⅱ)令
,求数列b
n的前n项和S
n.
查看答案
设函数
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)△ABC,角A,B,C所对边分别为a,b,c,且
,求a的值.
查看答案