满分5 > 高中数学试题 >

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都...

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(Ⅰ)求曲线C的方程
(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有manfen5.com 满分网<0?若存在,求出m的取值范围;若不存在,请说明理由.
(Ⅰ)设P(x,y)是曲线C上任意一点,然后根据等量关系列方程整理即可. (Ⅱ)首先由于过点M(m,0)的直线与开口向右的抛物线有两个交点A、B,则设该直线的方程为x=ty+m(包括无斜率的直线);然后与抛物线方程联立方程组,进而通过消元转化为一元二次方程;再根据韦达定理及向量的数量积公式,实现•<0的等价转化;最后通过m、t的不等式求出m的取值范围. 【解析】 (Ⅰ)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足: 化简得y2=4x(x>0). (Ⅱ)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2). 设l的方程为x=ty+m,由得y2-4ty-4m=0,△=16(t2+m)>0, 于是① 又.⇔(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0② 又,于是不等式②等价于③ 由①式,不等式③等价于m2-6m+1<4t2④ 对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2-6m+1<0,解得. 由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA∥平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
查看答案
设f(x)是定义在R上的函数,对m,n∈R恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1;
(2)求证:当x∈R时,恒有f(x)>0;
(3)求证:f(x)在R上是减函数.
查看答案
已知二次函数f(x)的图象过A(-1,0),B(3,0),C(1,-8).
(1)求f(x)的解析式;
(2)求不等式f(x)≥0的解集.
(3)将f(x)的图象向右平移2个单位,求所得图象的函数解析式g(x).
查看答案
汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x年的总维修费y满足y=ax2+bx,已知第一年的总维修费为1000元,前两年的总维修费为3000元,则这种汽车的最佳使用年限为    年. 查看答案
过双曲线manfen5.com 满分网的右焦点F和虚轴端点B作一条直线,若右顶点A到直线FB的距离等于manfen5.com 满分网,则双曲线的离心率e=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.