登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设函数f(x)=x-,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,...
设函数f(x)=x-
,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是
.
已知f(x)为增函数且m≠0,分当m>0与当m<0两种情况进行讨论即可得出答案. 【解析】 已知f(x)为增函数且m≠0, 当m>0,由复合函数的单调性可知f(mx)和mf(x)均为增函数, 此时不符合题意. 当m<0时,有 因为y=2x2在x∈[1,+∞)上的最小值为2, 所以1+, 即m2>1,解得m<-1或m>1(舍去). 故答案为:m<-1.
复制答案
考点分析:
相关试题推荐
将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记
,则S的最小值是
.
查看答案
直线y=1与曲线y=x
2
-|x|+a有四个交点,则a的取值范围是
.
查看答案
设n∈N
+
,一元二次方程x
2
-4x+n=0有整数根的充要条件是n=
.
查看答案
计算
÷
=
.
查看答案
由直线
与曲线y=cosx所围成的封闭图形的面积为( )
A.
B.1
C.
D.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.