满分5 > 高中数学试题 >

已知函数y=f(x)=(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f...

已知函数y=f(x)=manfen5.com 满分网(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N,且f(1)<manfen5.com 满分网
(1)试求函数f(x)的解析式;
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.
(1)先根据函数为奇函数即f(-x)=-f(x)求得c=0,进而把函数解析式整理成的形式,根据均值不等式求得函数f(x)的最小值的表达式为a和b的关系,进而根据f(1)<求得b的范围,最后求得b的值,则a的值可得.进而求得函数f(x)的解析式. (2)假设存在一点(x,y)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x,-y)也在y=f(x)图象上,则可得x与y两个关系式进而求出得到. 【解析】 (1)∵f(x)是奇函数, ∴f(-x)=-f(x),即, ∴c=0. ∵a>0,b>0, ∴当x>0时,有f(x)=≥2, 当且仅当x=时等号成立,于是2=2,∴a=b2, 由f(1)<得即, ∴2b2-5b+2<0,解得<b<2,又b∈N, ∴b=1,∴a=1,∴f(x)=x+. (2)假设存在一点(x,y)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x,-y)也在y=f(x)图象上, 则, 所以消去y得x2-2x-1=0,解得x=1±. ∴y=f(x)图象上存在两点(1+,2),(1-,-2)关于(1,0)对称.
复制答案
考点分析:
相关试题推荐
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:
(1)仓库面积S的最大允许值是多少?
(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
查看答案
定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=manfen5.com 满分网.求f(x)在[-2,2]上的解析式.
查看答案
设函数f(x)=x-manfen5.com 满分网,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是    查看答案
里氏震级M的计算公式为:M=lgA-lgA,其中A是测震仪记录的地震曲线的最大振幅,A是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为    倍. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.