满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,⊙O1与⊙O2交于M、N两点,直线AE与这两个圆...

选修4-1:几何证明选讲
如图,⊙O1与⊙O2交于M、N两点,直线AE与这两个圆及MN依次交于A、B、C、D、E.且AD=19,BE=16,BC=4,求线段AE的长.

manfen5.com 满分网
利用四点共圆,结合相交弦定理,可得AB•CD=BC•DE,进而根据题设线段长,即可求得线段AE的长. 【解析】 因为A,M,D,N四点共圆,所以AC•CD=MC•CN. 同理,有BC•CE=MC•CN,所以AC•CD=BC•CE, 即(AB+BC)•CD=BC•(CD+CE),所以AB•CD=BC•DE. 设CD=x,则AB=AD-BC-CD=19-4-x=15-x,DE=BE-BC-CD=16-4-x=12-x, 所以(15-x)x=4(12-x),即x2-19x+48=0,解得x=3或x=16(舍). ∴AE=AB+DE-BD=19+16-7=28.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx-manfen5.com 满分网,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
查看答案
如图,设F是椭圆manfen5.com 满分网的左焦点,直线l为对应的准线,直线l与x轴交于P点,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:对于任意的割线PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面积的最大值.

manfen5.com 满分网 查看答案
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;
(Ⅲ)记连续3次摸球中奖的次数为ξ,求ξ的分布列.
查看答案
manfen5.com 满分网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=manfen5.com 满分网.证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.