满分5 > 高中数学试题 >

选修4-5:不等式选讲 已知a+b+c=1,求证:.

选修4-5:不等式选讲
已知a+b+c=1,求证:manfen5.com 满分网
证明一:将平方和写出和的平方减去乘积的2倍,再利用基本不等式,进行证明; 证明二:作差,利用配方法,再与0进行比较,即可证明; 证明三:利用柯西不等式进行证明. 证明一:∵a2+b2+c2=(a+b+c)2-(2ab+2bc+2ac)≥(a+b+c)2-2(a2+b2+c2) ∴3(a2+b2+c2)≥(a+b+c)2=1∴ 证明二:∵ ∴ 证明三:∵(12+12+12)(a2+b2+c2)≥(a+b+c)2=1 即3(a2+b2+c2)≥1,∴
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,⊙O1与⊙O2交于M、N两点,直线AE与这两个圆及MN依次交于A、B、C、D、E.且AD=19,BE=16,BC=4,求线段AE的长.

manfen5.com 满分网 查看答案
已知函数f(x)=lnx-manfen5.com 满分网,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
查看答案
如图,设F是椭圆manfen5.com 满分网的左焦点,直线l为对应的准线,直线l与x轴交于P点,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:对于任意的割线PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面积的最大值.

manfen5.com 满分网 查看答案
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;
(Ⅲ)记连续3次摸球中奖的次数为ξ,求ξ的分布列.
查看答案
manfen5.com 满分网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.