满分5 > 高中数学试题 >

(理科做)已知函数f(x)=lnx-a2x2+ax(a≥0). (1)当a=1时...

(理科做)已知函数f(x)=lnx-a2x2+ax(a≥0).
(1)当a=1时,证明函数f(x)只有一个零点;
(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.
(1)把a=1代入函数,利用导数判断出函数的单调性求出最值,判断出最值的符号,然后分区间讨论可得到零点的个数. (2)方法一:对参数a进行讨论,然后利用导数f′(x)≤0(注意函数的定义域)来解答,方法一是先解得单调减区间A,再与已知条件中的减区间(1,+∞)比较,即只需要(1,+∞)⊆A即可解答参数的取值范围; 方法二是要使函数f(x)在区间(1,+∞)上是减函数,我们可以转化为f′(x)≤0在区间(1,+∞)上恒成立的问题来求解,然后利用二次函数的单调区间于对称轴的关系来解答也可达到目标. 【解析】 (1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞) ∴       …(2分) 令f′(x)=0,即=0,解得或x=1.∵x>0, ∴舍去. 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. ∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减 ∴当x=1时,函数f(x)取得最大值,其值为f(1)=ln1-12+1=0. 当x≠1时,f(x)<f(1),即f(x)<0. ∴函数f(x)只有一个零点.             …(7分) (2)显然函数f(x)=lnx-a2x2+ax的定义域为是(0,+∞) ∴=…(8分) 1当a=0时,,∴f(x)在区间(1,+∞)上为增函数,不合题意   …(9分) 2 当a>0时,f′(x)≤0(x>0)等价于(2ax+1)(ax-1)≥0(x>0),即 此时f(x)的单调递减区间为[,+∞). 依题意,得,解之得a≥1.  …(11分) 综上,实数a的取值范围是[1,+∞) …(14分) 法二: ①当a=0时,,∴f(x)在区间(1,+∞)上为增函数,不合题意…(9分) ②当a≠0时,要使函数f(x)在区间(1,+∞)上是减函数,只需f′(x)≤0在区间(1,+∞)上恒成立, ∵x>0,∴只要2a2x2-ax-1≥0,且a>0时恒成立, ∴解得a≥1 综上,实数a的取值范围是[1,+∞)  …(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案
设函数f(x)是定义在R上的奇函数,且图象关于点(manfen5.com 满分网,0)成中心对称.
(1)证明:y=f(x)为周期函数,并指出其周期;
(2)若f(-1)=-2,求f(1)+f(2)+f(3)+…+f(2011)的值.
查看答案
已知集合 A={x||x-1|<2},B={x|x2+ax-6<0},C={x|x2-2x-15<0}
(1)若A∪B=B,求a的取值范围;
(2)是否存在a的值使得A∪B=B∩C,若存在,求出a的值;若不存在,请说明理由.
查看答案
如对自然数n作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象,而23不是可连数,因23+24+25产生进位现象,那么小于200的“可连数”共有    个. 查看答案
若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.