满分5 > 高中数学试题 >

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=...

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程. (Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程. 【解析】 (Ⅰ)设椭圆的方程为,由题意可得: 椭圆C两焦点坐标分别为F1(-1,0),F2(1,0). ∴. ∴a=2,又c=1,b2=4-1=3, 故椭圆的方程为. (Ⅱ)当直线l⊥x轴,计算得到: ,,不符合题意. 当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1), 由,消去y得(3+4k2)x2+8k2x+4k2-12=0 显然△>0成立,设A(x1,y1),B(x2,y2), 则, 又 即, 又圆F2的半径, 所以, 化简,得17k4+k2-18=0, 即(k2-1)(17k2+18)=0,解得k=±1 所以,, 故圆F2的方程为:(x-1)2+y2=2.
复制答案
考点分析:
相关试题推荐
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.
(1)证明:BE⊥CD’;
(2)求二面角D'-BC-E的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
查看答案
设函数f(x)=x2-2a|x|(a>0).
(1)判断函数f(x)的奇偶性,并写出x>0时f(x)的单调增区间;
(2)若方程f(x)=-1有解,求实数a的取值范围.
查看答案
已知函数f(x)是定义在实数集R上的奇函数,当x>0时,f(x)=ax+lnx,其中a∈R.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间(-∞,-1)上单调减少,求a的取值范围;
(3)试证明对∀a∈R,存在ξ∈(1,e),使f′(ξ)=manfen5.com 满分网
查看答案

如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E.若manfen5.com 满分网,∠APB=30°,则AE=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.