满分5 > 高中数学试题 >

设函数y=f (x)是定义域为R的奇函数,且满足f (x-2)=-f (x)对一...

设函数y=f (x)是定义域为R的奇函数,且满足f (x-2)=-f (x)对一切x∈R恒成立,当-1≤x≤1时,f (x)=x3,则下列四个命题:
①f(x)是以4为周期的周期函数.
②f(x)在[1,3]上的解析式为f (x)=(2-x)3
③f(x)在manfen5.com 满分网处的切线方程为3x+4y-5=0.
④f(x)的图象的对称轴中,有x=±1,其中正确的命题是( )
A.①②③
B.②③④
C.①③④
D.①②③④
利用函数的奇偶性和f (x-2)=-f (x),可以得出函数的周期为4,然后结合-1≤x≤1时,f (x)=x3,得到函数在[1,3]上的解析式为f (x)=(2-x)3,利用导数的几何意义求得f (x)在处得切线的斜率,即可求得其切线方程.结合函数的奇偶性,周期性就可得到其图象的对称轴. 【解析】 ∵f (x-2)=-f (x)对一切x∈R恒成立, ∴f (x-4)=-f (x-2)=-[-f(x)]=f(x)∴f(x)是以4为周期的周期函数.①对 设1≤x≤3∴-1≤2-x≤1  又∵当-1≤x≤1时,f (x)=x3, ∴f(2-x)=(2-x)3=-f(x)∴f (x)=(2-x)3  ②对 ∴f'(x)=-3(2-x)2∴f'()=-=k 又∵=(2-)3=∴f (x)在处的切线方程为:y-=(x-)即:3x+4y-5=0.③对 由f (x-2)=-f (x)=f(-x)知函数图象的一条对称轴为x=-1,又∵f(x)为奇函数,其图象关于y轴对称  ∴f (x)的图象的对称轴中,有x=1,故④对. 故选D.
复制答案
考点分析:
相关试题推荐
△ABC的外接圆的圆心为O,半径为1,manfen5.com 满分网manfen5.com 满分网,则向量manfen5.com 满分网manfen5.com 满分网方向上的投影为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在用数学归纳法证明f(n)=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<1(n∈N*,n≥3)的过程中:假设当n=k(k∈N*,k≥3)时,不等式f(k)<1成立,则需证当n=k+1时,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),则g(k)=( )
A.manfen5.com 满分网+manfen5.com 满分网
B.manfen5.com 满分网+manfen5.com 满分网-manfen5.com 满分网
C.manfen5.com 满分网-manfen5.com 满分网
D.manfen5.com 满分网-manfen5.com 满分网
查看答案
若将函数y=2sin(x+φ)的图象上每个点的横坐标缩短为原来的manfen5.com 满分网倍(纵坐标不变),再向右平移manfen5.com 满分网个单位后得到的图象关于点(manfen5.com 满分网,0)对称,则|φ|的最小值是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知等比数列中{an}中,a1+a3=101,前4项和为1111,令bn=lg an,则b2009=( )
A.2008
B.2009
C.2010
D.2222
查看答案
曲线y=cosx,manfen5.com 满分网与坐标轴围成的面积是( )
A.4
B.2
C.manfen5.com 满分网
D.3
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.