满分5 > 高中数学试题 >

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( ) A...

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
命题“∃x∈R,使x2+ax-4a<0为假命题”,等价于命题“∀x∈R,使x2+ax-4a≥0为真命题”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命题“∀x∈R,使x2+ax-4a≥0为真命题”,所以命题“∃x∈R,使x2+ax-4a<0为假命题”.由此得到命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 【解析】 ∵命题“∃x∈R,使x2+ax-4a<0为假命题”, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴△=a2+16a≤0, ∴-16≤a≤0, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”; ∵-16≤a≤0, ∴△=a2+16a≤0, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴命题“∃x∈R,使x2+ax-4a<0为假命题”, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”. 故命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 故选C.
复制答案
考点分析:
相关试题推荐
下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( )
A.y=|log3x|
B.y=x3
C.y=e|x|
D.y=cos|x|
查看答案
已知圆C经过点A(5,1),B(1,3)两点,圆心在x轴上,则C的方程是( )
A.(x-2)2+y2=50
B.(x+2)2+y2=10
C.(x+2)2+y2=50
D.(x-2)2+y2=10
查看答案
manfen5.com 满分网如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为( )
A.manfen5.com 满分网m
B.manfen5.com 满分网m
C.manfen5.com 满分网m
D.manfen5.com 满分网m
查看答案
直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )
A.1
B.-1
C.-2或-1
D.-2或1
查看答案
如果a>b,则下列各式正确的是( )
A.a•lgx>b•lgx(x>0)
B.ax2>bx2
C.a2>b2
D.a•2x>b•2x
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.