满分5 > 高中数学试题 >

如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的...

manfen5.com 满分网如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的前一段OD是以O为顶点,x轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网),x∈[4,8]时的图象,图象的最高点为B(5,manfen5.com 满分网),DF⊥OC,垂足为F.
(I)求函数y=Asin(ωx+φ)的解析式;
(II)若在湖泊内修建如图所示的矩形水上乐园PMFE,问点P落在曲线OD上何处时,水上乐园的面积最大?
(I)利用函数的解析式,结合函数的图象求出A,ω,通过函数经过B,求出φ,即可求函数y=Asin(ωx+φ)的解析式; (II)求出D(4,4),曲线OD的方程为y2=4x,(0≤x≤4).推出矩形的面积的表达式,利用函数的导数求出面积的最大值,推出P的位置即可. 【解析】 (Ⅰ)对于函数y=Asin(ωx+φ)由图象可知,A=,ω==, 将(5,),代入y=sin(x+φ)得:, |φ|<,所以φ=,所以函数的解析式为y=sin(x). (Ⅱ)在y=sin(x)中,令x=4,得D(4,4) 从而得曲线OD的方程为y2=4x,(0≤x≤4). 设点P()(0≤t≤4),则矩形PMFE的面积为S=,0≤t≤4. 因为S′=4-,由S′=0得t=,且t∈时S′>0,S递增, t∈时S′<0,S递减, 所以当t=,S最大,此时点P的坐标.
复制答案
考点分析:
相关试题推荐
将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连接部分线段后围成一个空间几何体,如图2所示.
(I)证明:直线BE∥平面ADF;
(II)求面FBE与面ABCD所成角的正切值.

manfen5.com 满分网 查看答案
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cosmanfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=3,b+c=6
(I)求a的值;
(II)求manfen5.com 满分网的值.
查看答案
已知数列{an}是等比数列,Sn为其前n项和.
(I)设manfen5.com 满分网,求an
(II)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列.
查看答案
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2+6x+21)+f(y2-8y)<0恒成立,则manfen5.com 满分网的取值范围是    查看答案
(文)已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.