满分5 > 高中数学试题 >

如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2...

如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)试在平面CDE上确定点P,欲使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.

manfen5.com 满分网
(Ⅰ)欲证BC⊥平面BDE,根据直线与平面垂直的判定定理可知只需证BC与平面BDE内两相交直线垂直,根据面面垂直的性质可知ED⊥平面ABCD,则ED⊥BC,根据勾股定理可知BC⊥BD,满足定理所需条件; (Ⅱ)DE,DA,DC两两垂直,以D为顶点,DA,DC,DE分别为x轴y轴z轴,建立直角坐标系D-xyz,求出D,A,E,B,F,以及,,设P(o,y,z)通过|y|=|z|.设是平面BEF的法向量,利用,求出,推出与所成的角为60°或120°.通过cos=和y|=|z|.求出P的坐标. 【解析】 (Ⅰ)在正方形ADEF中,ED⊥AD. 又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD, 所以ED⊥平面ABCD. 所以ED⊥BC.(3分) 在直角梯形ABCD中,AB=AD=1,CD=2,可得. 在△BCD中,, 所以BD2+BC2=CD2. 所以BC⊥BD.(5分) 所以BC⊥平面BDE.(6分) (Ⅱ)DE,DA,DC两两垂直,以D为顶点,DA,DC,DE分别为x轴y轴z轴,建立直角坐标系D-xyz, 则D(0,0,0),A(2,0,0),E(0,0,2),B(2,2,0),F(2,0,2)=(2,0,0),设P(o,y,z)则|y|=|z|. 令是平面BEF的法向量,则, ∴ 令y′=1,得 ∴ ∵AP与平面BEF所成的角等于30° ∴与所成的角为60°或120°. ∴cos===. ∴y2+z2+4yz-4=0 又∵|y|=|z|. ∴y=z或y=-z,当y=z时y=z=, 当y=-z时,上式无解, ∴P(0,),或P(0,-).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,角θ的始边OA落在ox轴上,其始边、终边与单位圆分别交于点A、C、θ∈(0,manfen5.com 满分网),外△AOB为等边三角形.
(Ⅰ)若点C的坐标为(manfen5.com 满分网).求cos∠BOC;
(Ⅱ)记f(θ)=|BC|2,求函数f(θ)的解析式和值域.
查看答案
已知函数f (x)=ax2+bx+l( a,b∈R,a≠0 ),函数f (x)有且只有一个零点,且f (-1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)当x∈[-2,2]时,g( x)=f (x)-kx不是单调函数,求实数k的取值范围.
查看答案
如图,在△ABC中,AB=2,BC=1,∠ABC=120°.以点B为圆心,BC的长为半径的半圆交AC于D点,则cos∠ABD的值等于   
manfen5.com 满分网 查看答案
二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=manfen5.com 满分网πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=    查看答案
定义区间[x1,x2]( x1<x2)的长度为|x1-x2|.已知函数y=|x2|的定义域为[a,b],值域为[0,8],则区间[a,b]长度的最大值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.