满分5 > 高中数学试题 >

已知函数f(x)=x2-ax-aln(x-1)(a∈R) (1)当a=1时,求函...

已知函数f(x)=x2-ax-aln(x-1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间;
(3)试说明是否存在实数a(a≥1)使y=f(x)的图象与manfen5.com 满分网无公共点.
(1)先求出函数的定义域,再把a=1代入求出其导函数以及单调区间,即可求出函数f(x)的最值; (2)先求出函数的导函数,再利用分类讨论思想讨论导函数对应方程根的大小,进而求出函数f(x)的单调区间; (3)先由(2)得f(x)在(1,+∞)的最小值为,再求出在[1,+∞)上的最大值,让其与的值相比较即可求得结论. 【解析】 (1)函数f(x)=x2-ax-aln(x-1)(a∈R)的定义域是(1,+∞) 当a=1时,,所以f(x)在为减函数 在为增函数,所以函数f(x)的最小值为=. (2), 若a≤0时,则,f(x)=>0在(1,+∞)恒成立,所以f(x)的增区间为(1,+∞). 若a>0,则,故当,f′(x)=≤0, 当时,f(x)=≥0, 所以a>0时f(x)的减区间为,f(x)的增区间为 (3)a≥1时,由(2)知f(x)在(1,+∞)的最小值为, 令=在[1,+∞)上单调递减, 所以,则>0, 因此存在实数a(a≥1)使f(x)的最小值大于, 故存在实数a(a≥1)使y=f(x)的图象与无公共点
复制答案
考点分析:
相关试题推荐
如图,椭圆的方程为manfen5.com 满分网,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5manfen5.com 满分网
(1)求椭圆的方程;
(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

manfen5.com 满分网 查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:manfen5.com 满分网x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
在数列{an}中,manfen5.com 满分网manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn
查看答案
如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求平面ECD和平面ACB所成的锐二面角的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=manfen5.com 满分网,f(C)=0,若向量manfen5.com 满分网与向量manfen5.com 满分网共线,求a,b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.