(1)先将原函数用降幂公式转化为一个角的一个三角函数的形式,由相邻两对称轴间的距离为2可知周期求得ω,由最大值为3,求得A,又由图象经过点(0,2),求得φ,进而得f(x)解析式.
(2)求出数列的前几项,判断数列是周期数列,求出一个周期的和.然后求解S100.
【解析】
(1)将原函数f(x)=Acos2(ωx+φ)+1转化为:f(x)=cos(2ωx+2φ)++1
相邻两对称轴间的距离为2可知函数的周期为:4,则2ω==,ω=
由最大值为3,可知A=2
又∵图象经过点(0,2),
∴cos2φ=0
∴2φ=kπ+,,φ=,
∴f(x)=cos(x+)+2=-sin+2.
(2)∵f(1)=1,f(2)=2,f(3)=3,f(4)=2,f(5)=1…所以数列{an}是周期数列,T=4,
f(1)+f(2)+f(3)+f(4)=8,
S100=f(1)+f(2)+f(3)+…+f(100)=8×25=200.