由题设对[0,1]中任意的x1和x2,任意λ∈[0,1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2)恒成立,知,此函数必为一凸函数,依据凸函数的图象特征进行判断即可.
【解析】
由题意,观察四个选项:A选项中的图象先降后升是一凸函数,B选项中的函数是先升后降是一凹函数,C选项中的图象中列出了一部分,不合定义域,D选项中的函数图象凸、凹函数各一部分.
考察定义:对[0,1]中任意的x1和x2,任意λ∈[0,1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2)恒成立知,此函数在[0,1]是凸函数,由上分析知只有A选项符合题意,
故选A.