满分5 > 高中数学试题 >

三个城市分别位于A,B,C三点处(如图),且km,BC=40km.今计划合建一个...

三个城市分别位于A,B,C三点处(如图),且manfen5.com 满分网km,BC=40km.今计划合建一个货运中转站,为同时方便三个城市,准备建在与B、C等距离的O点处,并修建道路OA,OB,OC.记修建的道路的总长度为ykm.
(Ⅰ)设OA=x(km),或OB=x(km),或点O到BC的距离为x(km),或∠CBO=x(rad).请你选择用其中的某个x,将y表示为x的函数;
(Ⅱ)由(Ⅰ)中建立的函数关系,确定货运中转站的位置,使修建的道路的总长度最短.

manfen5.com 满分网
(Ⅰ)设OB=x(km),在Rt△ODB中,可求得OD=,从而可得y是x的函数表达式;若设OA=x(km),可求得y=x+(0≤x≤20);若设∠CBO=x(rad),可求得y=20+(0≤x≤); (Ⅱ)由y=2x+20-(20≤x≤20),可求得y′=2-,利用导数法求得在[20,20]上的极小值即可. 【解析】 (Ⅰ)设OB=x(km),延长AO交于BC于点D. ∵BD=DC=BC=20,OB=OC, ∴OA=AD-0D=-OD=20-OD, 在Rt△ODB中,OD=, ∴y=OA+OB+OC=2x+20-, 又20≤x≤20, ∴y=2x+20-(20≤x≤20)…(6分) (若设OA=x(km),则y=x+2(0≤x≤20); 若设∠CBO=x(rad), 则y=20-20tanx+2×=20+(0≤x≤); (Ⅱ)由(Ⅰ)中建立的函数关系y=2x+20-(20≤x≤20),来确定符合要求的货运中转站的位置. ∵y=2x+20-(20≤x≤20), ∴y′=2-,令y'=0得x=,或x=-(舍去). 当时,y'<0;当时,y'>0, ∴函数y在时,取得极小值,这个极小值就是函数y在上的最小值.…(11分) 因此,当货运中转站建在三角形区内且到B、C两点的距离均为km时,修建的道路的总长度最短.…(13分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx,manfen5.com 满分网(a为常数),若直线l与y=f(x)和y=g(x)的图象都相切,且l与y=f(x)的图象相切于定点P(1,f(1)).
(1)求直线l的方程及a的值;
(2)当k∈R时,讨论关于x的方程f(x2+1)-g(x)=k的实数解的个数.
查看答案
已知二次函数f(x)满足f(2+x)=f(2-x),f(0)=3;方程f(x)=0有两个实根,且两实根的平方和为10.
(1)求函数f(x)的解析式;
(2)若关于x的方程f(x)-2m=0在区间[0,3]内有根,求实数m的取值范围.
查看答案
设函数manfen5.com 满分网
(1)当manfen5.com 满分网时,求f(x)的最大值.
(2)令manfen5.com 满分网,以其图象上任一点P(x,y)为切点的切线的斜率manfen5.com 满分网恒成立,求实数a的取值范围.
查看答案
设A={x|x2-ax-15≥0},B={x|x2-2ax+b<0},A∩B={x|5≤x<6},求A∪B.
查看答案
设函数g(x)=x2-2(x∈R),manfen5.com 满分网则f(x)的值域是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.