满分5 > 高中数学试题 >

已知函数f(x)=x2+2ax+2,x∈[-5,5], (1)当a=1时,求f(...

已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
(1)先求出二次函数的对称轴,结合开口方向可知再对称轴处取最小值,在离对称轴较远的端点处取最大值; (2)要使y=f(x)在区间[-5,5]上是单调函数,只需当区间[-5,5]在对称轴的一侧时,即满足条件. 【解析】 (1)f(x)=x2+2ax+2=(x+a)2+2-a2, 其对称轴为x=-a,当a=1时,f(x)=x2+2x+2, 所以当x=-1时,f(x)min=f(-1)=1-2+2=1; 当x=5时,即当a=1时,f(x)的最大值是37,最小值是1.(6分) (2)当区间[-5,5]在对称轴的一侧时, 函数y=f(x)是单调函数.所以-a≤-5或-a≥5, 即a≥5或a≤-5,即实数a的取值范围是(-∞,-5]∪[5,+∞)时, 函数在区间[-5,5]上为单调函数.(12分)
复制答案
考点分析:
相关试题推荐
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=    查看答案
已知:y=loga(2-ax)在[0,1]上是单调递减的,则函数f(x)=x2-ax+1在[0,1]上的最大值是    查看答案
若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是    查看答案
已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是    查看答案
若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.