满分5 > 高中数学试题 >

某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售...

某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示年人均A饮料的销量,单位;升),用哪个来描述人均A饮料销量与地区的人均GDP的关系更合适?说明理由.
(A)y=ax2+bx(B)y=logax+b(C)y=ax+b(D)y=xa+b
若人均GDP为1千美元时,年人均A饮料的销量为2升;若人均GDP为4千美元时,年人均A饮料的销量为5升,把你所选的模拟函数求出来.
(2)因为A饮料在B国被检测出杀虫剂的含量超标,受此事件的影响,A饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均A饮料的销量最多为多少?
(1)考虑到A,B,C,D四个函数中只有A符合题意,因为B,C,D三个函数是单调函数.然后用待定系数法求出A的解析式可得. (2)根据题中人均GDP的要求范围把x的取值分成三段,分别求出每一段的最大值,并比较去最大即可. 【解析】 (1)用A来模拟比较合适因为B,C,D表示的函数在区间[0.5,8]上是单调的 因为人均GDP为1千美元时,年人均A饮料的销量为2升;若人均GDP为4千美元时,年人均A饮料的销量为5升,把x=1,y=2;x=4,y=5代入到y=ax2+bx得 所以函数解析式为 (2)当x∈[0.5,3]时,,在x∈[0.5,3]上递增,所以 当x∈[6,8]时,,在x∈[6,8]上递减,所以 当x∈(3,6)时,,,所以 比较大小得:当时, 答:当人均GDP在4.5千美元的地区,人均A饮料的销量最多为
复制答案
考点分析:
相关试题推荐
已知,椭圆C过点Amanfen5.com 满分网,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案
设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
查看答案
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在实数m,使得方程manfen5.com 满分网在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
查看答案
已知函数f(x)=manfen5.com 满分网-xm,且f(4)=-manfen5.com 满分网
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明.
查看答案
已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.