满分5 > 高中数学试题 >

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R. (1)当a...

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
(1)根据ex>0,a<0,不等式可化为,由此可求不等式f(x)>0的解集; (2)求导函数,再分类讨论:①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立;②当a≠0时,令g(x)=ax2+(2a+1)x+1,因为△=(2a+1)2-4a=4a2+1>0,f(x)有极大值又有极小值.若a>0,可得f(x)在[-1,1]上不单调;若a<0,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足,从而可确定a的取值范围; (3)当a=0时,原方程等价于,构建函数,求导函数,可确定h(x)在(-∞,0)和(0,+∞)内是单调增函数,从而可确定方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,故可得k的值. 【解析】 (1)因为ex>0,所以不等式f(x)>0,即为ax2+x>0, 又因为a<0,所以不等式可化为, 所以不等式f(x)>0的解集为.(4分) (2)f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex, ①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立, 当且仅当x=-1时取等号,故a=0符合要求;(6分) ②当a≠0时,令g(x)=ax2+(2a+1)x+1, 因为△=(2a+1)2-4a=4a2+1>0,所以g(x)=0有两个不相等的实数根x1,x2,不妨设x1>x2, 因此f(x)有极大值又有极小值. 若a>0,因为g(-1)•g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.(8分) 若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调, 因为g(0)=1>0,必须满足,即,所以. 综上可知,a的取值范围是.(10分) (3)当a=0时,方程即为xex=x+2,由于ex>0,所以x=0不是方程的解,所以原方程等价于, 令, 因为对于x∈(-∞,0)∪(0,+∞)恒成立, 所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,(13分) 又h(1)=e-3<0,h(2)=e2-2>0,,h(-2)=e-2>0, 所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上, 所以整数k的所有值为{-3,1}.(16分)
复制答案
考点分析:
相关试题推荐
平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为manfen5.com 满分网
(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案
现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值.

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点
(1)求证:DE∥平面ABC;
(2)求三棱锥E-BCD的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网,求:
(1)manfen5.com 满分网
(2)manfen5.com 满分网的值.
查看答案
已知函数manfen5.com 满分网若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.