(1)先根据前n项和求出数列的通项表达式;再结合a2=4,a6=8a3求出c,k,即可求出数列的通项;
(2)直接利用错位相减法求和即可.
【解析】
(1)由Sn=kcn-k,得an=sn-sn-1=kcn-kcn-1; (n≥2),
由a2=4,a6=8a3.得kc(c-1)=4,kc5(c-1)=8kc2(c-1),解得;
所以a1=s1=2;
an=sn-sn-1=kcn-kcn-1=2n,(n≥2),
于是an=2n.
(2):∵nan=n•2n;
∴Tn=2+2•22+3•23+…+n•2n;
2Tn=22+2•23+3•24+…+(n-1)•2n+n•2n+1;
∴-Tn=2+22+23…+2n-n•2n+1=-n•2n+1=-2+2n+1-n•2n+1;
即:Tn=(n-1)•2n+1+2.