(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项
(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为an=3n-7,则|an|=|3n-7|=,根据等差数列的求和公式可求
【解析】
(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d
由题意可得,
解得或
由等差数列的通项公式可得,an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7
(II)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比
当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件
故|an|=|3n-7|=
设数列{|an|}的前n项和为Sn
当n=1时,S1=4,当n=2时,S2=5
当n≥3时,Sn=|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)
=5+=,当n=2时,满足此式
综上可得