满分5 > 高中数学试题 >

已知定义域为R的函数f(x)=是奇函数. (1)求a,b的值; (2)用定义证明...

已知定义域为R的函数f(x)=manfen5.com 满分网是奇函数.
(1)求a,b的值;
(2)用定义证明f(x)在(-∞,+∞)上为减函数;
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
(1)根据奇函数定义,利用f(0)=0且f(-1)=-f(1),列出关于a、b的方程组并解之得a=b=1; (2)根据函数单调性的定义,任取实数x1、x2,通过作差因式分解可证出:当x1<x2时,f(x1)-f(x2)>0,即得函数f(x)在(-∞,+∞)上为减函数; (3)根据函数的单调性和奇偶性,将不等式f(t2-2t)+f(2t2-k)<0转化为:k<3t2-2t对任意的t∈R都成立,结合二次函数的图象与性质,可得k的取值范围. 【解析】 (1)∵f(x)为R上的奇函数,∴f(0)=0,可得b=1 又∵f(-1)=-f(1) ∴=-,解之得a=1 经检验当a=1且b=1时,f(x)=,满足f(-x)=-f(x)是奇函数.    …(4分) (2)由(1)得f(x)==-1+, 任取实数x1、x2,且x1<x2 则f(x1)-f(x2)=-= ∵x1<x2,可得,且 ∴f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-∞,+∞)上为减函数;     …(8分) (3)根据(1)(2)知,函数f(x)是奇函数且在(-∞,+∞)上为减函数. ∴不等式f(t2-2t)+f(2t2-k)<0恒成立,即f(t2-2t)<-f(2t2-k)=f(-2t2+k) 也就是:t2-2t>-2t2+k对任意的t∈R都成立. 变量分离,得k<3t2-2t对任意的t∈R都成立, ∵3t2-2t=3(t-)2-,当t=时有最小值为- ∴k<-,即k的范围是(∞,-).                                  …(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.
查看答案
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?
(服装厂售出一件服装的利润=实际出厂单价-成本)
查看答案
若函数y=lg(3-4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.
查看答案
设集合manfen5.com 满分网,B={x|x2-3mx+2m2-m-1<0}.
(1)当x∈Z时,求A的非空真子集的个数.
(2)若B=φ,求m的取值范围.
(3)若A⊇B,求m的取值范围.
查看答案
已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①manfen5.com 满分网;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.