(Ⅰ)先求出直线的斜率,因为曲线的切线垂直与直线,所以曲线的切线在该点的斜率与直线的斜率乘积为-1,即曲线在该点的导数与直线的斜率乘积为-1.
(Ⅱ)求出函数f(x)的导数,再讨论a的范围,根据导数求出函数的最值
【解析】
(Ⅰ)直线y=x+2的斜率为1.
函数y=f(x)的导数为,
则f′(1)=-+,所以a=1.(5分)
(Ⅱ)f′(x)=(ax-2)/x2,x∈(0,+∞).
①当a=0时,在区间(0,e]上f′(x)=-2/x2,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为F(e)=.
②当<0,即a<0时,在区间(0,e]上f′(x)<0,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
③当0<<e,即a>时,
在区间上f′(x)<0,此时f(x)在区间上单调递减;
在区间上f′(x)>0,此时f(x)在区间上单调递增;
则f(x)在区间(0,e]上的最小值为f()=a+aln2.
④当,即时,
在区间(0,e]上f′(x)≤0,此时f(x)在区间(0,e]上为单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
综上所述,当时,f(x)在区间(0,e]上的最小值为+a;
当a>时,f(x)在区间(0,e]上的最小值为a+aln.