两县城A和B相距20km,现计划在两城外以AB为直径的半圆弧
上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在
的中点时,对城A和城B的总影响度为0.065.
(1)按下列要求建立函数关系式:
①设∠CAB=θ(rad),将θ表示成y 的函数;并写出函数的定义域.
②设AC=x(km),将x表示成y的函数;并写出函数的定义域.
(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小?
考点分析:
相关试题推荐
已知数列{a
n}中,a
1=1,前n项和
(1)求a
2,a
3;
(2)求{a
n}的通项公式.
查看答案
已知向量
=(
sin
,1),
=(cos
,cos
2),f(x)=
•
.
(1)若f(x)=1,求cos(x+
)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+
c=b,求函数f(B)的取值范围.
查看答案
已知函数f(x)=2
x+k•2
-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2
-x成立,求实数k的取值范围.
查看答案
定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s
2-2s)≤-f(2t-t
2),则当
的取值范围是
.
查看答案
如图,平面内有三个向量
、
、
,其中与
与
的夹角为120°,
与
的夹角为30°,且|
|=|
|=1,|
|=
,若
=λ
+μ
(λ,μ∈R),则λ+μ的值为
.
查看答案