满分5 > 高中数学试题 >

两县城A和B相距20km,现计划在两城外以AB为直径的半圆弧上选择一点C建造垃圾...

两县城A和B相距20km,现计划在两城外以AB为直径的半圆弧manfen5.com 满分网上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在manfen5.com 满分网的中点时,对城A和城B的总影响度为0.065.
(1)按下列要求建立函数关系式:
①设∠CAB=θ(rad),将θ表示成y 的函数;并写出函数的定义域.
②设AC=x(km),将x表示成y的函数;并写出函数的定义域.
(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小?

manfen5.com 满分网
(1)①设∠CAB=θ(rad),AC=20cosθ,BC=20sinθ,结合当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065,则可得函数解析式,并可写出函数的定义域; ②先利用AC⊥BC,求出,再利用圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,得到y和x之间的函数关系,最后利用垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065求出k即可求出结果. (2)先求出导函数以及导数为0的根,进而求出其单调区间,找到函数的最小值即可. 【解析】 (1)①在直角△ABC中,AC=20cosθ,BC=20sinθ,则y=(0<θ<) 当x=10时,y=0.065,所以k=9 所以y表示成x的函数为y=(0<θ<); ②由题意知AC⊥BC,BC2=400-x2,y=(0<x<20) (2)选②,则y′=, 令y'=0得18x4=8(400-x2)2, 所以x2=160,即x=4, 当0<x<4时,18x4<8(400-x2)2,即y'<0,以函数为单调减函数, 当4<x<20时,18x4>8(400-x2)2,即y'>0,所以函数为单调增函数. 所以当x=4时,即当C点到城A的距离为4时,函数y=(0<x<20)有最小值.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=1,前n项和manfen5.com 满分网
(1)求a2,a3
(2)求{an}的通项公式.
查看答案
已知向量manfen5.com 满分网=(manfen5.com 满分网sinmanfen5.com 满分网,1),manfen5.com 满分网=(cosmanfen5.com 满分网,cos2manfen5.com 满分网),f(x)=manfen5.com 满分网manfen5.com 满分网
(1)若f(x)=1,求cos(x+manfen5.com 满分网)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+manfen5.com 满分网c=b,求函数f(B)的取值范围.
查看答案
已知函数f(x)=2x+k•2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
查看答案
定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当manfen5.com 满分网的取值范围是    查看答案
manfen5.com 满分网如图,平面内有三个向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中与manfen5.com 满分网manfen5.com 满分网的夹角为120°,manfen5.com 满分网manfen5.com 满分网的夹角为30°,且|manfen5.com 满分网|=|manfen5.com 满分网|=1,|manfen5.com 满分网|=manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(λ,μ∈R),则λ+μ的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.