令g(x)=xα,定义域为[-b,-a]∪[a,b],g(x)=xα在区间[a,b]上的最大值为5,最小值为2,再分类讨论,即可得到结论.
【解析】
令g(x)=xα,定义域为[-b,-a]∪[a,b],则
∵函数f(x)=xα+1(α∈Q)在区间[a,b]上的最大值为6,最小值为3,
∴g(x)=xα在区间[a,b]上的最大值为5,最小值为2,
若g(x)=xα是偶函数,则g(x)=xα在区间[-b,-a]上的最大值为5,最小值为2,∴函数f(x)=xα+1(α∈Q)在区间[-b,-a]上的最大值为6,最小值为3,最大值与最小值的和9;
若g(x)=xα是奇函数,则g(x)=xα在区间[-b,-a]上的最大值为-2,最小值为-5,∴函数f(x)=xα+1(α∈Q)在区间[-b,-a]上的最大值为-1,最小值为-4,最大值与最小值的和-5;
∴f(x)在区间[-b,-a]上的最大值与最小值的和为-5或9
故答案为:-5或9.