满分5 > 高中数学试题 >

函数y=的定义域为M,N={x|log2(x-1)<1},则如图所示阴影部分所表...

函数y=manfen5.com 满分网的定义域为M,N={x|log2(x-1)<1},则如图所示阴影部分所表示的集合是( )
manfen5.com 满分网
A.{x|-2≤x<1}
B.{x|-2≤x≤2}
C.{x|1<x≤2}
D.{x|x<2}
如图所示阴影部分所表示的集合为:CUM∩N,由函数y=的定义域为M,知M={x|x2-4>0}={x|x>2,或x<-2},再由N={x|log2(x-1)<1}={x|1<x<3},能求出如图所示阴影部分所表示的集合. 【解析】 ∵函数y=的定义域为M, ∴M={x|x2-4>0}={x|x>2,或x<-2}, N={x|log2(x-1)<1}={x|}={x|1<x<3}, ∴如图所示阴影部分所表示的集合为: CUM∩N={x|-2≤x≤2}∩{x|1<x<3}={x|x|1<x≤2}. 故选C.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网上为增函数,且manfen5.com 满分网
(1)求θ的值;
(2)若在[1,e]上至少存在一个x,使得f(x)>g(x)成立,求m的取值范围.
查看答案
已知椭圆manfen5.com 满分网(a>b>0)的一个顶点为B(0,4),离心率e=manfen5.com 满分网,直线l交椭圆于M、N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.
查看答案
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

manfen5.com 满分网 查看答案
已知△ABC的两边长分别为AB=25,AC=39,且O为△ABC外接圆的圆心.(注:39=3×13,65=5×13)
(1)若外接圆O的半径为manfen5.com 满分网,且角B为钝角,求BC边的长;
(2)求manfen5.com 满分网的值.
查看答案
已知 p:f(x)=manfen5.com 满分网,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.