满分5 > 高中数学试题 >

已知函数y=f(x),x∈N*,y∈N*,满足:①对任意a,b∈N*,a≠b,都...

已知函数y=f(x),x∈N*,y∈N*,满足:①对任意a,b∈N*,a≠b,都有af(a)+bf(b)>af(b)+bf(a);②对任意n∈N*都有f[f(n)]=3n.
(I)试证明:f(x)为N*上的单调增函数;
(II)求f(1)+f(6)+f(28);
(III)令an=f(3n),n∈N*,试证明:.manfen5.com 满分网
(1)由已知条件中对任意a,b∈N*,a≠b,我们不妨令a<b,则可将已知中af(a)+bf(b)>af(b)+bf(a)变形为(a-b)(f(a)-f(b))>0由a<b判断出f(a)-f(b)的符号,结合单调性的定义,即可作出结论. (2)由对任意n∈N*都有f[f(n)]=3n.我们不妨令f(1)=a,然后分a<1,a=1,a>1三类进行讨论,再由a∈N*,可以求出a值,结合(1)的结论,及y∈N*,我们不难得到函数值与自变量之间的对应关系. (3)an=f(3n),则易得f(an)=f(f(3n))=3×3n=3n+1,an+1=f(3n+1)=f(f(an))=3an,a1=f(3)=6.分析可知数列{an}是以6为首项,以3为公比的等比数列再利用放缩法可证明成立. 【解析】 (I)由①知,对任意a,b∈N*,a<b,都有(a-b)(f(a)-f(b))>0, 由于a-b<0,从而f(a)<f(b), 所以函数f(x)为N*上的单调增函数. (II)令f(1)=a,则a≥1,显然a≠1,否则f(f(1))=f(1)=1,与f(f(1))=3矛盾. 从而a>1,而由f(f(1))=3, 即得f(a)=3. 又由(I)知f(a)>f(1)=a,即a<3. 于是得1<a<3,又a∈N*, 从而a=2,即f(1)=2. 进而由f(a)=3知,f(2)=3. 于是f(3)=f(f(2))=3×2=6, f(6)=f(f(3))=3×3=9, f(9)=f(f(6))=3×6=18, f(18)=f(f(9))=3×9=27, f(27)=f(f(18))=3×18=54, f(54)=f(f(27))=3×27=81, 由于54-27=81-54=27, 而且由(I)知,函数f(x)为单调增函数, 因此f(28)=54+1=55. 从而f(1)+f(6)+f(28)=2+9+55=66. (III)f(an)=f(f(3n))=3×3n=3n+1,an+1=f(3n+1)=f(f(an))=3an,a1=f(3)=6. 即数列{an}是以6为首项,以3为公比的等比数列. ∴an=6×3n-1=2×3n(n=1,2,3). 于是, 显然, 另一方面3n=(1+2)n=1+Cn1×2+Cn2×22++Cnn×2n≥1+2n, 从而. 综上所述,.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网manfen5.com 满分网,其中e=2.71828….
(1)若f(x)在其定义域内是单调函数,求实数p的取值范围;
(2)若p∈(1,+∞),问是否存在x>0,使f(x)≤g(x)成立?若存在,求出符合条件的一个x;否则,说明理由.
查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
已知数列{an}是公差为2的等差数列,且a1+1,a3+1,a7+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令manfen5.com 满分网,记数列{bn}的前n项和为Tn,求证:manfen5.com 满分网
查看答案
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.甲一次种植了4株沙柳,根据以往的经验,这个人种植沙柳时每种植3株就有2株成活,且各株沙柳成活与否是相互独立的.
(Ⅰ)写出成活沙柳的株数的分布列,并求其期望值;
(Ⅱ)为了有效地防止风沙危害,该地至少需要种植24000株成活沙柳.如果参加种植沙柳的人每人种植4株沙柳,问至少需要具有甲的种植水平的多少人来参加种植沙柳,才能保证有效防止风沙危害.
查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,满足acosC=(2b-c)cosA
(1)求角A;
(2)若a=3,求△ABC面积S的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.