满分5 > 高中数学试题 >

已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖...

已知平面区域manfen5.com 满分网恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.
(1)根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得. (2)设直线l的方程是:y=x+b.根据CA⊥CB,可知圆心C到直线l的距离,进而求得b,则直线方程可得. 【解析】 (1)由题意知此平面区域表示的是以 O(0,0),P(4,0),Q(0,2)构成的三角形及其内部, 且△OPQ是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是, 所以圆C的方程是(x-2)2+(y-1)2=5. (2)设直线l的方程是:y=x+b. 因为,所以圆心C到直线l的距离是, 即= 解得:b=-1. 所以直线l的方程是:y=x-1.
复制答案
考点分析:
相关试题推荐
一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长30km的圆形区域.已知港口位于台风正北40km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?
查看答案
圆C过点P(1,2),Q(-2,3),且圆C在两坐标轴上截得的弦长相等,求圆的方程.
查看答案
已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求满足下列条件的a,b值.
(Ⅰ)l1⊥l2且l1过点(-3,-1);
(Ⅱ)l1∥l2且原点到这两直线的距离相等.
查看答案
求倾斜角是45°,并且与原点的距离是5的直线的方程.
查看答案
若a≥0,b≥0,且当manfen5.com 满分网时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.