满分5 > 高中数学试题 >

设函数f(x)=x3-3ax+b(a≠0). (Ⅰ)若曲线y=f(x)在点(2,...

设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
(1)已知函数的解析式f(x)=x3-3ax+b,把点(2,f(2))代入,再根据f(x)在点(2,f(2))处与直线y=8相切,求出a,b的值; (2)由题意先对函数y进行求导,解出极值点,然后再根据极值点的值讨论函数的增减性及其增减区间; 【解析】 (Ⅰ)f′(x)=3x2-3a, ∵曲线y=f(x)在点(2,f(2))处与直线y=8相切, ∴ (Ⅱ)∵f′(x)=3(x2-a)(a≠0), 当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点. 当a>0时,由, 当时,f′(x)>0,函数f(x)单调递增, 当时,f′(x)<0,函数f(x)单调递减, 当时,f′(x)>0,函数f(x)单调递增, ∴此时是f(x)的极大值点,是f(x)的极小值点.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}满足a2=0,a6+a8=-10
(I)求数列{an}的通项公式;
(II)求数列{manfen5.com 满分网}的前n项和.
查看答案
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小.

manfen5.com 满分网 查看答案
某学生在上学路上要经过3个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是manfen5.com 满分网,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.
查看答案
已知函数f(x)=2sin(manfen5.com 满分网x-manfen5.com 满分网),x∈R
(1)求f(manfen5.com 满分网)的值;
(2)设α,β∈[0,manfen5.com 满分网],f(3α+manfen5.com 满分网)=manfen5.com 满分网,f(3β+2π)=manfen5.com 满分网,求cos(α+β)的值.
查看答案
如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则manfen5.com 满分网的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.