满分5 > 高中数学试题 >

已知函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈...

已知函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈(-manfen5.com 满分网),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=    时,f(ak)=0.
本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈(-),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f(a14)=0,易得k值. 【解析】 因为函数f(x)=sinx+tanx是奇函数, 所以图象关于原点对称,图象过原点. 而等差数列{an}有27项,an∈(). 若f(a1)+f(a2)+f(a3)+…+f(a27)=0, 则必有f(a14)=0, 所以k=14. 故答案为:14
复制答案
考点分析:
相关试题推荐
若方程lgkx=2lg(x+1)仅有一个实根,那么k的取值范围是    查看答案
若不等式manfen5.com 满分网对一切非零实数x恒成立,则实数a的取值范围是    查看答案
在边长为1的正三角形ABC中,设manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=    查看答案
manfen5.com 满分网阅读程序框图(如图所示),回答问题:
若a=50.6,b=0.65,c=log0.65,则输出的数是    查看答案
圆x2+y2-2x=0上的动点P到直线x-y-3=0的最短距离为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.