登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*)....
设数列{a
n
}的前n项和为S
n
,已知a
1
=1,S
n+1
=4a
n
+2(n∈N
*
).
(1)设b
n
=a
n+1
-2a
n
,证明数列{b
n
}是等比数列;
(2)求数列{a
n
}的通项公式.
(1)由题设条件知b1=a2-2a1=3.由Sn+1=4an+2和Sn=4an-1+2相减得an+1=4an-4an-1,即an+1-2an=2(an-2an-1),所以bn=2bn-1,由此可知{bn}是以b1=3为首项、以2为公比的等比数列. (2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{an}的通项公式. 【解析】 (1)由a1=1,及Sn+1=4an+2, 得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2-2a1=3. 由Sn+1=4an+2,① 则当n≥2时,有Sn=4an-1+2,② ①-②得an+1=4an-4an-1,所以an+1-2an=2(an-2an-1), 又bn=an+1-2an,所以bn=2bn-1,所以{bn}是以b1=3为首项、以2为公比的等比数列.(6分) (2)由(I)可得bn=an+1-2an=3•2n-1,等式两边同时除以2n+1,得. 所以数列是首项为,公差为的等差数列. 所以,即an=(3n-1)•2n-2(n∈N*).(13分)
复制答案
考点分析:
相关试题推荐
据相关调查数据统计,2012年某大城市私家车平均每天增加400辆,除此之外,公交车等公共车辆也增长过快,造成交通拥堵现象日益严重.现有A、B、C三辆车从同一地点同时出发,开往甲、乙、丙三地,已知A、B、C这三辆车在驶往目的地的过程中,出现堵车的概率依次为
,且每辆车是否被堵互不影响.
(1)求这三辆车恰有两辆车被堵的概率;
(2)用ξ表示这三辆车中被堵的车辆数,求ξ的分布列及数学期望Eξ.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,
,b
2
=ac,求B.
查看答案
在平行六面体ABCD-A
1
B
1
C
1
D
1
中,三棱锥B
1
-ABC为正四面体,则直线AD
1
与平面ACC
1
A
1
所成角的正弦值为
.
查看答案
则z=ax-by的最大值为
.
查看答案
已知
=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.