满分5 > 高中数学试题 >

已知函数f(x)=x2-8lnx,g(x)=-x2+14x. (Ⅰ)若函数y=f...

已知函数f(x)=x2-8lnx,g(x)=-x2+14x.
(Ⅰ)若函数y=f(x)和函数y=g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;
(Ⅱ)若方程f(x)=g(x)+m有唯一解,求实数m的值.
(I)由已知中函数f(x)=x2-8lnx,g(x)=-x2+14x的解析式,我们易求出他们导函数的解析式,进而求出导函数大于0的区间,构造关于a的不等式,即可得到实数a的取值范围; (Ⅱ)若方程f(x)=g(x)+m有唯一解,则函数h(x)=f(x)-g(x)=2x2-8lnx-14x与y=m的图象有且只有一个交点,求出h'(x)后,易求出函数的最值,分析函数的性质后,即可得到满足条件的实数m的值. 【解析】 (Ⅰ)(x>0) 当0<x<2时,f'(x)<0,当x>2时,f'(x)>0, 要使f(x)在(a,a+1)上递增,必须a≥2g(x)=-x2+14x=-(x-7)2+49 如使g(x)在(a,a+1)上递增,必须a+1≤7,即a≤6 由上得出,当2≤a≤6时f(x),g(x)在(a,a+1)上均为增函数 (Ⅱ)方程f(x)=g(x)+m有唯一解有唯一解 设h(x)=2x2-8lnx-14x (x>0)h'(x),h(x)随x变化如下表 x (0,4) 4 (4,+∞) h'(x) - + h(x) ↘ 极小值-24-16ln2 ↗ 由于在(0,+∞)上,h(x)只有一个极小值, ∴h(x)的最小值为-24-16ln2, 当m=-24-16ln2时,方程f(x)=g(x)+m有唯一解.
复制答案
考点分析:
相关试题推荐
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:manfen5.com 满分网x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
已知函数f(x)=x2(x-t),t>0.
(I)求函数f(x)的单调区间;
(II)设函数y=f(x)在点P(x,y)处的切线的斜率为k,当x∈(0,1]时,manfen5.com 满分网恒成立,求t的最大值.
查看答案
已知manfen5.com 满分网是R上奇函数
(I)求a,b的值;
(II)解不等式manfen5.com 满分网
查看答案
设函数manfen5.com 满分网的定义域为集合A,函数manfen5.com 满分网的定义域为集合B.
(I)求manfen5.com 满分网的值;
(II)求证:a≥2是A∩B=∅的充分非必要条件.
查看答案
已知下列两个命题:P:函数f(x)=x2-2mx+4(m∈R)在[2,+∞)单调递增;Q:关于x的不等式4x2+4(m-2)x+1>0(m∈R)的解集为R;若P∨Q为真命题,P∧Q为假命题,求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.